Android app on Google Play

Bruker (BRKR) Enters Exclusive License for MALDI-TOF Testing

January 3, 2013 7:04 AM EST Send to a Friend
Bruker (Nasdaq: BRKR) announces an exclusive licensing agreement with Erasmus Medical Center, Rotterdam, The Netherlands for rapid testing of beta-lactamase activity using MALDI-TOF technology. This new method is fully compatible with the well-established Bruker MALDI Biotyper system, which is used for MALDI-TOF mass spectrometry-based identification of microorganisms in over 700 clinical and non-clinical microbiology laboratories worldwide.

In many laboratories, the MALDI Biotyper has replaced classical biochemical testing for bacterial identification in the past five years due to the accuracy, speed, extensive species coverage, ease of use and cost effectiveness of the system. Classical biochemical techniques depend upon detecting different metabolic properties of microorganisms; however, these techniques can take hours or even days for completion and they lack specificity. The MALDI Biotyper uses a molecular approach based on specific proteomic fingerprints from bacterial and fungal strains and published studies have highlighted the greater accuracy offered, as well as the typically much faster time-to-result (TTR). With an installed base of more than 700 MALDI Biotyper systems at the end of 2012, Bruker estimates that in the year 2012 its customers performed about 20 million microbial identifications on the MALDI Biotyper installed base.

In addition to this paradigm shift for microbial identification, the MALDI Biotyper is increasingly being used for functional resistance mechanism detection. Antibiotic resistance is an ever increasing problem as bacteria acquire new mechanisms of resistance against classes of antibiotics currently being used in clinical care. Data from the WHO European Region shows that resistance of some pathogens now reaches over 50% in some countries, and new resistance mechanisms are emerging and spreading rapidly. In the European Union, Norway and Iceland it is estimated that 400,000 resistant infections are occurring every year, leading to approximately 25,000 deaths.

Gram-negative bacteria are a common source of infections and pose significant challenges due to their ability to rapidly acquire new resistance mechanisms resulting in multi-drug resistant (MDR) strains. One such mechanism of resistance found in gram-negatives is Extended Spectrum Beta-Lactamase (ESBL) in which enzymes produced by bacteria attack and cleave the beta-lactam ring in antibiotics, thus rendering them ineffective. This includes penicillins, and third generation cephalosporins. Another mechanism is resistance to Carbapenems, which frequently are the drugs of last resort for clinicians when other antibiotics have been ineffective due to resistance.

Consumption of carbapenems increased significantly in European countries from 2007-2010 and occurrence of carbapenem-resistant Klebsiella pneumonia is already high and increasing in some European countries. Recent publications in both the scientific and popular press have high-lighted the challenge and outbreaks associated with microorganisms containing ESBL mechanisms including reports on NDM-1, KPC and most recently CRE (Carbapenem-Resistant Enterobacteriaceae). Accurate and rapid detection of resistance is essential for effective infection control measures, as current techniques lack either specificity or rapid turn-around time.

MALDI-TOF mass spectrometry allows for an exact determination of the molecular weight of a broad range of antibiotics. In the presence of an ESBL, the antibiotic is converted to fragments of predictable molecular weight which are also measured using the MALDI Biotyper. As with bacterial identification, the MALDI Biotyper is thus anticipated to provide both improved, shorter time-to-result as well as potentially better specificity.




You May Also Be Interested In


Related Categories

Corporate News, FDA

Add Your Comment